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Vortices in magnetically coupled superconducting layered systems
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Pancake vortices in stacks of thin superconducting films or layers are considered. It is stressed that in the
absence of Josephson coupling topological restrictions upon possible configurations of vortices are removed
and various examples of structures forbidden in bulk superconductors are given. In particular, it is shown that
vortices may skip surface layers in samples of less than a certain sizeRc which might be macroscopic. The
Josephson coupling suppressesRc estimates.
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I. INTRODUCTION

Attempts to measure the anisotropy parameter in Bi-
Tl-based high-Tc superconducting compounds yield ve
large values;100– 300.1 In some layered organic superco
ductors this parameter is even higher.2 This has led many to
believe that the Josephson coupling in these materials i
weak that for many purposes it can be disregarded altoge
Models of vortices in these compounds based on pure m
netic coupling between two-dimensional pancake vorti
proved to suffice for many applications.3–8

We consider in this paper a system of thin supercond
ing layers coupled only via the magnetic field between the
This system is qualitatively different from the bulk superco
ductors: there is no phase coherence across the layer
three-dimensional bulk materials vortices are banned fr
terminating inside superconductor because of topology:
phase changes by 2p when one circles the vortex core
which the phase is singular. A core termination would ha
meant that the phase could acquire the 2p change along a
path that does not contain a singularity.

Clearly, this ban does not hold in layered systems with
Josephson coupling. A vortex perpendicular to the layers
better to say, a stack of pancake vortices~or ‘‘pancakes’’!,
may terminate~we use the term ‘‘vortex termination in th
layer N’’ for the situation when the vortex cores are prese
in the layerN and in all layers under, whereas the cores
absent in the layers aboveN up to the sample surface! in
principle, at any layer and channel the flux at least partia
into interlayer space. This event might be energetically
likely, but it is not forbidden by topology of the phase, whic
is defined separately in each layer.

We argue below that within the model of layered mate
als with zero Josephson coupling such termination in lay
adjacent to the surface might be energetically favorable
samples of finite size. We use the formal technique s
gested by one of us,9 which is reviewed briefly. The tech
nique allows us to compare energies of various configu
tions in a straightforward manner. As one of the applicatio
we compare energies of two configurations: one with a v
tex piercing all layers of a half-space multilayer and anot
with the vortex terminating in one of the top layers. W
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show that the energy cost of the subsurface vortex term
tion diverges with the sample sizeR:

De;
f0

2

16p2L
ln

R

klab
, ~1!

whereL5lab
2 /s, lab is the penetration depth,s is the layer

periodicity, k5lab /jab , and jab is the coherence length
The divergence ofDe is weak, however, and in sample
smaller thanRc;klab the subsurface termination becom
energetically favorable. Withlab'0.3 mm, k'100 for Bi-
2212, we estimateRc;30 mm with a large numerical facto
so thatRc may reach a macroscopic size.

This estimate is reduced considerably by including
Josephson coupling because one has to include in the ba
the energy of Josephson strings channeling the flux sidew
into the interlayer space. We estimate, however, that e
thenRc remains on the order of microns. This suggests t
if the surface of a layered compound like Bi-2212 has defe
separated byRc , the occurrence of vortex cores at the su
face is a rare event. We also show that for a vortex termin
ing at a depth!lab under the surface, most of the magne
flux crosses the core-free layers into the free space, the
sence of the core notwithstanding. Hence, we expect vort
terminating under the surface to be invisible for the scann
tunneling technique, but detectable in decoration exp
ments.

Other examples of possible but unusual configurations
pancake vortices in layered materials are considered.
shown that a vortex in a film of afinite size and containing
several superconducting layers may have normal cores
in internal layers and carry flux different from the flux qua
tum f0. The last feature appears also in exotic configuratio
such as a stack of pancake vortices situated in every o
layer. Implications of these possibilities are discussed.

II. APPROACH

We begin with a brief review of thin superconductin
films. As was stressed by Pearl,10 the situation in a thin film
differs from that of a bulk since a large contribution to th
energy of a vortex comes from the stray fields. In fact,
1623 ©2000 The American Physical Society
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problem of a vortex in a thin film is reduced to that of th
field distribution in free space subject to certain bound
conditions at the film surface. Since curlh5div h50 out-
side, one can introduce a scalar potential for theoutsidefield:

h5¹w, ¹2w50. ~2!

To formulate the boundary conditions for the outsi
Laplace problem let us consider a film of thicknessd!l
occupying thexy plane;l is the bulk penetration depth o
the film material. For a vortex atr50, the London equations
for the film interior read

h1
4pl2

c
curl j5f0ẑd~r !, ~3!

where ẑ is the unit vector along the vortex axis. Averagin
over the thicknessd we obtain

hz1
4pL

c
curlz g5f0d~r !, ~4!

where g(r ) is the sheet current density,r5(x,y), and L
5l2/d is the film penetration depth. Other components
London equation turn identities after averaging.

Since all derivatives]/]z are large relative to the tangen
tial ]/]r , the Maxwell equation curlh54p j /c is reduced to
conditions relating the sheet current to discontinuities of
tangential field:

4p

c
gx5hy

22hy
1 ,

4p

c
gy5hx

12hx
2 . ~5!

Here the superscripts6 stand for the upper and lower (z5
6d/2) faces of the film. The field component perpendicu
to the film hz is the same at both film faces.

Substituting Eq.~5! into Eq. ~4! and using divh50, we
obtain

hz1LS ]hz
2

]z
2

]hz
1

]z D 5f0d~r !. ~6!

This equation along with

hz
15hz

2 , ~7!

and conditions at infinity constitute the boundary conditio
for the Laplace problem, Eq.~2!, of the field distribution
outside the film.

Let us turn to the question of energy. We consider a g
eral situation of vortices infinite bulk samples. The energ
consists of the London energy~magnetic1 kinetic! inside
the samplee ( i ) and the magnetic energy outsidee (a):

e ( i )5E dV

8p Fh21S 4pl

c D 2

j 2G , e (a)5E dV

8p
h2. ~8!

Then, for the potential gauged to zero at` ~which is possible
in zero applied field! one has

8pe (a)5 R wh•dS, ~9!

where the integral is over the sample’s surface withdS di-
rected inward the material. If~as it may happen in som
y

f

e

r

s

-

situations considered below! w does not vanish at infinity,
one has to examine the integral~9! at infinity.

The London part can be transformed integrating the
netic term by parts:

8pe ( i )5
4pl2

c R ~h3 j !•dS, ~10!

where the integral is over the samples surface and the sur
of the vortex core; there might be more than one sample
the system, while not all of them may contain vortices. T
integral over the samples surface is further transformed:

R dS•~ j3¹w!5 R dS•w~¹3 j !

@take a closed contour at the sample surface, consider
total sample surface as made of two pieces supported by
contour, and apply the Stokes theorem to the integration o
each piece to show thatrdS•(¹3w j )50#. Combining the
result withe (a) of Eq. ~9!, one obtains

R dS•wS h1
4pl2

c
curl j D .

The expression in parentheses is zero for samples with
vortices, whereas for those containing vortices it
f0v̂d (2)(r2r v) wherev̂ is the direction of the vortex cross
ing the surface at the pointr v @d (2)(r2r v) is the two-
dimensionald function#. We then obtain

8p

f0
e5w~rent!2w~rex!2

4pl2

f0c R
core

dS•~h3 j !, ~11!

with rent and rex being the positions of the vortex entry an
exit at the sample surface~the vortex is assumed to cross th
sample surface at right angles!. Note that if there are more
than one superconductor present, but the vortex pierces
one of them, the result~11! still holds ~althoughw ’s differ
for each particular configuration!. For more than one vortex
in the system, one has to sum up over all vortices. For t
films, the integral over the core surface (}d) can be ne-
glected in Eq.~11!.

It is instructive to see now how the known Pea
results10,11 for vortex in a film and a bulk half-space can b
obtained within the approach outlined here. We also dem
strate an added advantage of the method, a relatively sim
way to evaluate energies.

A. Vortex in a thin film

Consider a thin film situated atz50. The general form of
the potential which vanishes atz→1` of the empty upper
half-space is

w~r ,z.0!5E d2k

~2p!2
wu~k!eik•r2kz, ~12!

with k5Akx
21ky

2. In the lower half-space we have to repla
z→2z in Eq. ~12!. The two dimensional~2D! Fourier trans-
forms wu(k) andw l(k) for the upper and lower half-space
are obtained with the help of boundary conditions~6!, ~7!:
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PRB 61 1625VORTICES IN MAGNETICALLY COUPLED . . .
2kwu1Lk2~w l2wu!5f0 , 2kwu5kw l . ~13!

This system yields

wu52
f0

k~112kL!
. ~14!

We point out first that the total flux crossing a planez
5const is

Fz5E hzd
2r5hz~k50!52kwue2kzuk505f0 ~15!

for any z, i.e., the film is crossed by the fluxf0. And the
second: according to Eq.~11!, the energye of the Pearl
vortex is given by

8pe

f0
5w l~0!2wu~0!522wu~0!5E d2k

~2p!2

2f0

k~112kL!

5
f0

p E
0

2p/j dk

112kL
, ~16!

where the cutoff atkmax'2p/j is introduced to a logarithmi-
cally divergent integral. This yields

e5
f0

2

16p2L
lnS 4p

L

j D . ~17!

B. Vortex in a half-space

Let now the half-spacez,0 be filled with a supercon
ductor having the penetration depthl. The stray field in the
free spacez.0 is given by the potential~12!. Within the
superconductor we have the London equation~3!. The gen-
eral solution can be written as

h5h(0)1h(v), ~18!

whereh(0) solves Eq.~3! with zero right-hand side~RHS!,
whereash(v) is a particular solution of the full Eq.~3!. The
latter can be taken as the field of an infinitely long unp
turbed vortex alongz; this assures correct singular behav
at the vortex axis. The Fourier transform of this field is

h(v)5
f0

11l2k2
ẑ. ~19!

We now Fourier transform the homogeneous Eq.~3! for
hi

(0)(r ) with respect to the variabler and obtain

hi
(0)~k,z!~11k2l2!2l2]z

2hi
(0)~k,z!50, ~20!

where i 5x,y,z. The solution which vanishes deep in th
superconductor is

hi
(0)~k,z!5Hi~k!eqz, q5A11l2k2/l. ~21!

Here,Hi(k)’s are not independent: divh(0)50 gives

ikxHx1 ikyHy1qHz50. ~22!

The boundary conditions atz50 read
-

ikx,ywu5Hx,y , ~23!

2kwu5Hz1hz
(v) . ~24!

The four Eqs.~22!–~24! suffice to determine the four un
knowns,wu andHx,y,z . We obtain

w52
f0

kq~k1q!l2
, Hz52

f0k

q2~q1k!l2
. ~25!

We do not write downHx,y which describe the spreading o
the vortex field under the surface. Equations~25! coincide
with Pearl’s solution.10

To evaluate the energy of the vortex in this case with
help of the general result~11!, we first calculate the potentia
at the vortex exit:

w~0!5E d2k

~2p!2
w~k!52

f0

2pl
. ~26!

The energy associated with the core, i.e., the integral over
core surface in Eq.~11!, is

2c

l2
ec52pjE

2`

0

dz@hzj u# r 5j . ~27!

Integrating the London relation

j u52
cf0

8p2l2 S ¹u1
2p

f0
AD

u

~28!

over a circle of a radiusr, we obtain for the current densit
near the core

j u5
cf0

8p2l2r
~29!

which results in

ec5
f0

8pE2`

0

dzhz . ~30!

Using Hz of Eq. ~25! with Eqs.~11! and ~26! we obtain the
energy cost of vortex termination at the surface as

f0
2

16p2l
S p

2
21D'

0.57

ln k
eLl, ~31!

where eL is the energy per unit length of an unperturb
vortex.

III. SUBSURFACE TERMINATION

A. Half-space 1 a thin layer

We now turn to a stack of pancake vortices perpendicu
to the layers of a half-space layered sample. The laye
structure has the periods whereas each layer is characteriz
by the Pearl lengthL5l2/d with d being the layer thick-
ness. Note that themeasurablelengthlab is related to other
lengths in the problem by
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lab
2 5l2

s

d
5Ls. ~32!

Let us consider first the stack with a missing pancake
the top layer. We model the rest of the stack as a continu
half-spacez,0 with the penetration depthlab .6 A thin film
with the Pearl lengthL is situated atz5s. In the two do-
mains of free space,z.s and 0,z,s, the 2D Fourier trans-
forms of the potential are

wu~k!e2kz, z.s, ~33!

w1~k!ekz1w2~k!e2kz, 0,z,s. ~34!

On the film atz5s, we have the boundary conditions~7! and
~6!. Three more equations are provided by the field conti
ity at z50. The requirement divh(0)50, Eq.~22!, completes
the system thus providing enough equations forwu , w1,2,
andHx,y,z :

wu5
2f0Le2ks

Dqlab
2

, w15
f0

Dqklab
2

,

w25
f0e2ks

Dqklab
2 ~112kL!, ~35!

D5q2k2~112kL!~k1q!e2ks

and

Hz~k!5
f0

Dqlab
2 @12e2ks~112kL!#2

f0

q2lab
2

, ~36!

whereq is defined in Eq.~21!; Hx,y is not needed here.
The fluxes through planesz5const are

Fz5f0

L

L1lab
, z.s, ~37!

Fz5f0 , z,0. ~38!

Within the layer 0,z,s, the flux Fz decreases from the
bulk valuef0 to the value~37!. Therefore, a small fraction
of the flux,

f0lab /L5f0s/lab , ~39!

is channeled aside between the half-space and the top fi
Using the same formal scheme, we can solve the prob

when the film atz5s contains a pancake vortex. The on
difference with the case of ‘‘half-space1 an empty film’’ is
in the London boundary condition~7! on the film atz5s.
We skip details and provide the result denoting the new
lutions with a star:

wu* 5wu1
f0eks

kD
@k2q1~k1q!e2ks#,

w1,2* 5w1,27
f0eks

Dk
~q6k!, ~40!
n
us

-

.
m

-

Hz* 5Hz2
2kf0

D
.

The energy cost of vortex termination, i.e., the differen
between the situations without and with the top pancake
given by

8p

f0
De5@2wex~0!#2@went* ~s!2wex* ~s!2wex* ~0!#

1E
2`

0

dz~hz2hz* !; ~41!

the last line is the difference in core contributions of vort
lines in the low half-space, see Eq.~30!.

Evaluating the Fourier integrals forw ’s, one notes that the
integration overk is done within the domain 2p/R,2p/j
where R is the sample size andj is the coherence length
~usually calledjab). For s,j one can expande22ks in the
denominatorD and see that the term withs can be neglected
Indeed, by introducing a new variable sinhu5klab and uti-
lizing L@lab , we obtain

D'22k@11~L/lab!e
u#'22keuL/lab . ~42!

This results in a factor 1/L5s/lab
2 in front of the integrals.

Then, in the linear approximation ins, we can sets50 in the
integrand after which all integrals become simple. We obt
after a straightforward algebra:

De5
f0

2

16p2L
lnF R

~4p!3/2klab
G . ~43!

It is of interest to obtain the current distribution in the to
film. To this end, we write Eq.~12! in cylindric coordinates

w~r !5E dk k

2p
J0~kr !w~k!e2kz. ~44!

The tangential fields above and under the film are

hr
152E

0

` dk

2p
k2J1~kr !wue2ks,

hr
252E

0

` dk

2p
k2J1~kr !~w1eks1w2e2ks!.

~45!

The sheet current is given by

4p

c
gw5hr

12hr
252E

0

`k2dk

2p
J1~kr !w1eks, ~46!

where the boundary condition~7! at z5s, wu1w1e2ks2w2
50, had been used. With the help of Eq.~42! for D, we
obtain after integration@see Ref. 12, Eq.~6.663!#:

gw5
cf0

8p2Llab

I 1S r

2lab
DK0S r

2lab
D , ~47!

whereI 1 ,K0 are modified Bessel functions.13 Thus,gw van-
ishes asr ln(2lab/r) when r→0, and as 1/r for r @lab .
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We note that the same formal scheme can be applie
consider the termination of the pancake stack in the sec
third, etc., layer from the top. The lengthL characterizing
the top layers with no cores should then be taken asL/2,
L/3, etc.

B. Vortex in a finite stack of layers

As an example of such a system we consider a pancak
middle layer of a ‘‘short stack’’ of three films. Let the pan
cake sit at the origin of the film atz50; the film is charac-
terized by the lengthL. At z6s two other films are situated
having the film penetration depthL1ÞL. Following the
same method we write the 2D Fourier transforms:

wae2kz, z.s,

wb1ekz1wb2e2kz, 0,z,s, ~48!

wc1ekz1wc2e2kz, 2s,z,0.

Due to the symmetry,hbz(z)5hcz(2z), and wc152wb2 ,
wc252wb1; this leaves only three coefficientsw to be de-
termined. The boundary conditions~7! and ~6! at z5s give

wa1wb1e2ks2wb250, ~49!

wa~11kL1!2kL1~wb1e2ks1wb2!50. ~50!

The third equation is provided by the London boundary c
dition ~6! at z50:

wb1~122kL!2wb2~112kL!5f0 /k. ~51!

The continuity condition~7! for hz at z50 is satisfied iden-
tically. Equations~49!–~51! yield

wa5
2f0L1

D1
, wb15

f0

kD1
e22ks,

wb25
f0

kD1
~112kL1!, ~52!

D15~122kL!e22ks2~112kL!~112kL1!.

The fluxes are

Fz~z.s!5f0

L1

2L1L11s
,

Fz~0,z,s!5f0

L11s2z

2L1L11s
. ~53!

Note that the fluxf0s/(2L1L1)!f0 is deflected into the
space between the layers. ForL@L1@s,

Fz5f0

L1

2L
. ~54!

Note also that forL15L@s, the flux piercing the sandwich
made of identical films isf0/3. The energy is given by
to
d,

in

-

8pe

f0
5@wc2wb# r5z50522E d2k

~2p!2
~wb11wb2!.

~55!

Using the same argument as that leading to Eq.~42!, we
obtain for the denominator

D1'22kLS 2L1L1

L
12kL1D . ~56!

Integration in Eq.~55! is now easy.
Consider the caseL15L and sets50 ~everywhere ex-

cept in L5l2/s). Integration yields for the energy of on
pancake in a stack of three films

e010'
f0

2/3

16p2L
ln

16p2L2R

9j3
, ~57!

where it was assumed that the sample sizeR@2pL and the
subscript 010 is to indicate that the pancake is situated in
middle film. This is to be compared with a vortex piercing a
three layers, which can be considered as a Pearl vortex
single film with the effective film penetration depthL/3.
Then, according to Eq.~17!,

e1115
3f0

2

16p2L
ln

4pL

3j
, ~58!

and the subscript 111 indicates that each layer has a panc
The difference of energies~57! and ~58! is negative if

R,L~L/j!6 ~59!

and we have omitted a large numerical factor. This sugg
that in the stack of three films, vortices carrying the fluxf0/3
with a core only in the middle film might be energetical
preferable to standard vortices piercing the whole stack w
the fluxf0. It is worth noting that because our solution hol
for LÞL1, in fact, it applies also to a vortex piercingN
middle layers of the 2N11N stack of layers provided tha
bothN1s andNs are less thanlab ; this allows us to treat the
N1s as one film withL15lab

2 /N1s.

IV. INFINITE DILUTE STACK OF PANCAKES

We consider now an infinite stack of layers. Let the lay
at z50 and all even layers be free of pancakes; the panca
are situated atz56s and at all odd films~at r50). Consider
three regions~a! s,z,2s, ~b! 0,z,s, and ~c! 2s,z,0
~see Fig. 1!.

The 2D Fourier transforms

FIG. 1. The unit cell of a periodic structure 0,z,2s.
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wa5wa1ekz1wa2e2kz, ~60!

wb5wb1ekz1wb2e2kz, ~61!

wc5wc1ekz1wc2e2kz. ~62!

Due to the symmetry with respect toz50, hbz(z)
5hcz(2z). This giveswc152wb2 , wc252wb1. Further re-
lations are provided by periodicity which can be expressed
haz(z)5hcz(z22s) and yields

wa152wb2e22ks, wa252wb1e2ks. ~63!

Thus, out of 6 unknown coefficients of the system Eq.~60!–
~62! we are left with only two. As the two needed equatio
one can take the London conditions~6! at z50 andz5s:

wb1~122kL!2wb2~112kL!50,

wb1eks~112kL!2wb2e2ks~122kL!5f0 /k. ~64!

This gives

wb15
f0

kD2
~112kL!,

wb25
f0

kD2
~122kL!, ~65!

D25eks~112kL!22e2ks~122kL!2.

The flux at any planez5const within the domain~b! is
readily evaluated:

Fb~z!5hbz~k50!5@kwb1ekz2kwb2e2kz#k50

5f0

2L1z

4L1s
'

f0

2
. ~66!

Similarly, in the domain~c!:

Fc~z!5f0

2L2z

4L1s
'

f0

2
. ~67!

Therefore,F'f0/2 everywhere throughout the system.
Since we have in this case only one pancake per the

riod 2s of the structure, the line energy of the stacke
5ep/2s whereep is the energy per pancake:

8pep

f0
5wb~s!2wa~s!

52wb~s!52E d2k

~2p!2
~wb1eks1wb2e2ks!.

~68!

As above, within the integration domain we can simpl
the denominator,D2'8kL, and sets50 in the integrand.
Then we obtain after integration within 2p/R,2p/j:

e5S f0

8plab
D 2

ln
R

j
. ~69!
s

e-

Comparing this with the line energy of a standard vort
(f0/4plab)

2 ln k we see that dilute stacks considered he
are possible in small samples~whiskers! of a size R
,labk

3.

V. DISCUSSION

We now estimate how the energy cost~43! of the subsur-
face vortex termination is affected by the Josephson c
pling. Clearly, this coupling breaks the cylindrical symmet
of the field associated with the straight stack of pancake v
tices, and the flux~39! will not be spread even in all direc
tions in the space between the top layer and the rest. Still
small samplesR,lJ , in which the string cannot fully de-
velop, the asymmetry can be disregarded. Since the p
difference is zero for perfectly aligned stack of pancakes
all pairs of layers except the top one, the Josephson en
can be estimated as

eJ5
f0

2

8p3slc
2E0

R

r dr E
0

2p

du~12cosu!

'2sS f0R

4plablJ
D 2

5
f0

2

8p2L

R2

lJ
2 . ~70!

On the other hand, forR@lJ , the integral in Eq.~70! is
roughly proportional to the string areaRlJ becauselJ is an
estimate for the string width:

eJ5
f0

2

8p3slc
2

RlJ5
f0

2

8p3L

R

lJ
. ~71!

The energies~70! or ~71! should be added to the estima
~43! for the energy cost of the subsurface vortex terminati

Taking, for example, Bi-2212 withs515 Å, lJ54500 Å,
k5lab /jab550, we have forR51 m:

De5
f0

2

16p2LF lnS R

klab~4p!3/2D 1
2R

plJ
G . ~72!

We estimate the logarithm here as'22 @disregarding the
factor (4p)23/2 which could reduce this estimate to24].
The Josephson correction is 2R/plJ'1.4. Thus, in micron-
size samples of Bi-2212, the termination of vortices und
the surface is possible.

The above treatment is concerned with the case of z
applied field. The energy cost of the subsurface termina
should increase with increasing applied field. To have
estimate of this increase, one can evaluate the work nee
to remove a pancake from the top layer of a cylindrical sam
of radius R in the presence of a small external fieldHa .
Since one layer screening ability is weak, we assume
field uniform, which corresponds to the asymuthal curre
density j 5cA/4pl25cHar /8pl2 ~the vector potential can
be taken asA5Har /2). The work of the Lorentz force to
remove a pancake from the center is now readily obtaine
'Haf0R2/16pL. To compare with the estimate~72! we
write the extra cost due to the applied field as



fa

nd

n-
bi
il
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ni
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om
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PRB 61 1629VORTICES IN MAGNETICALLY COUPLED . . .
ea5
f0

2

16p2L

HapR2

f0
. ~73!

Since the expression in parentheses of Eq.~72! is on the
order one, we can say that the energy gain of the subsur
termination is lost in fieldsHa;f0 /pR2 which givesHa
;10 G for R51 m. This sets an approximate upper bou
on fields in which the subsurface termination may occur.

We would like to mention in conclusion that, since co
figurations considered here and similar ones are not for
den by topology, they should be taken into account wh
studying fluctuations in layered weakly coupled materia
They are certainly of interest for physics of layered orga
es
n

J.
ce

d-
e
.
c

superconductors in whichlc may reach a tens-of-micron
size at low temperatures~see, e.g., Ref. 2! as well as for
superconducting multilayers where the Josephson coup
can be reduced by varying the interlayer spacing.
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